

ISOMETER® isoMIL425

Insulation monitoring device for unearthed IT AC-, AC/DC and DC systems (IT systems) in military applications up to 3(N)AC, AC/DC 400 V

ISOMETER® isoMIL425

Insulation monitoring device for unearthed IT AC-, AC/DC and DC systems (IT systems) in military applications up to 3(N)AC, AC/DC 400 V

BENDER

ISOMETER® isoMIL425

Device features

- Monitoring of the insulation resistance (R mode) or the insulation impedance (Z mode) of unearthed 3(N)AC, AC and DC systems (IT systems) with galvanically connected rectifiers or inverters
- Insulation impedance (Z mode) for 50 Hz
 or 60 Hz
- Measurement of the mains voltage (r.m.s.) with undervoltage and overvoltage detection
- Measurement of DC voltages system to earth (L+/PE and L-/PE)
- Automatic adaptation to the system leakage capacitance up to 300 μF in R mode and $1\mu F$ in Z mode
- Automatic device self test with connection monitoring
- Selectable start-up delay, response delay and delay on release
- Two separately adjustable response ranges of 1...990 kΩ (alarm 1, alarm 2)
- Alarm signalling via LEDs (AL1, AL2), a display and alarm relays (K1, K2)
- N/C operation or N/O operation can be selected for the relays
- Measured value indication via multifunctional LCD
- Fault memory can be activated
- RS-485 (galvanically isolated) including the following protocols:
 - BMS interface (Bender measuring device interface) for data exchange with other Bender components
 - Modbus RTU
 - IsoData (for continuous data output)
- Password protection to prevent unauthorised parameter changes

Certifications

2

Product description

The ISOMETER[®] monitors the insulation resistance (R mode) or the insulation impedance (Z mode) of unearthed AC/DC main circuits (IT systems) with nominal system voltages of 3(N)AC, AC, AC/DC or DC 0...440 V. DC components existing in 3(N)AC, AC/DC systems do not influence the operating characteristics when a minimum load current of DC 10 mA flows. Due to the separate supply voltage, de-energised systems can also be monitored. The maximum permissible system leakage capacitance C_e is 300 µF in R mode and 1µF in Z mode.

Application

· AC, DC control circuits in military applications

Function

The latest measured insulation resistance is indicated on the LC display. This way any changes, for example when outgoing circuits are connected to the system, can be recognised easily. When the value falls below the preset response value, the response delay " t_{on} " starts. Once the response delay " t_{on} " has elapsed, the alarm relays "K1/K2" switch and the alarm LEDs "AL1/AL2" light up. By means of two separately adjustable response values/alarm relays, the messages can be evaluated separately. If the insulation resistance exceeds the release value (response value plus hysteresis), the alarm relays switch back to their initial position.

The fault location, shown on the display as a percentage, indicates the distribution of the insulation resistance between conductors L1/+ and L2/-. The alarm relays can be assigned to a detected fault or the faulty conductor in the menu. If the fault memory is enabled, the alarm relays remain in the alarm state until the reset button is pressed or until the supply voltage is switched off. The device functions can be checked using the test button. The device is configured via the LC display and the buttons on the front, or via the RS-485 interface (BMS or Modbus).

Connection monitoring

There are 3 options to monitor the connections to the system (L1(+)/L2(-)) and earth (E/KE): automatically every 24 h, by pressing the test button and when the supply voltage is applied. In case of a line interruption, the alarm relay K2 switches, the LEDs ON/AL1/AL2 flash and a message appears on the LC display:

- "E.02" for a fault in the connection to the system
- "E.01" for a fault in the connection to PE
- "E.0x" for a system fault.

After eliminating the fault, the alarm relays switch back to their initial position either automatically or by pressing the reset button.

Measurement method

The ISOMETER® isoMIL425 uses the AMP and PCP measurement methods.

Standards

The ISOMETER® has been developed in compliance with the following standards:

- DIN EN 61557-8 (VDE 0413-8):2015-12/Ber1:2016-12
 - IEC 61557-8:2014/COR1:2016

Operating elements

- LED "ON" (operation LED) flashes in case of interruption to the connecting wires E/KE, L1(+)/L2(-) or system faults.
- 2 Alarm LED "AL1" lights when the values fall below the set response value Alarm 1 and flashes in case of interruption to the connecting wires E/KE, L1(+)/L2(-) or system faults as well as in the case of overvoltage (can be activated).
- 3 Alarm LED "AL2" lights when the values fall below the set response value Alarm 2 and flashes in case of interruption to the connecting wires E/KE, L1(+)/L2(-) or system faults as well as in the case of undervoltage (can be activated).
- 4 LC display
- 5 Test button "T": to call up the self test Arrow up button: to change parameters, to move upwards in the menu
- 6 Reset button "R": to delete stored insulation fault alarms
 Down button: to change parameters, to move downwards in the menu
- 7 Menu button "MENU": to call up the menu system Enter button: to confirm parameter changes

Wiring diagram

Technical Data

Insulation coordination acc. to IEC 60664-1/IEC 6	50664-3
Definitions:	
Measuring circuit (IC1)	L1/+, L2/-
Supply circuit (IC2)	A1, A2
Output circuit (IC3)	11, 14, 24
Control circuit (IC4)	E, KE, T/R, A, B
Rated voltage	400 V
Overvoltage category	
Rated impulse voltage:	
IC1/(IC2-4)	6 kV
IC2/(IC3-4)	4 kV
IC 3/(IC4)	4 kV
Rated insulated voltage:	
IC1/(IC2-4)	400 V
I(2/(I(3-4)))	250 V
IC 3/(IC4)	250 V
Polution degree	3
Protective separation (reinforced insulation) between	<u> </u>
I(1/(I(2-4)	Overvoltage category III 600 V
(2)/((2-4))	Overvoltage category III, 300 V
$IC_2/(IC_4)$	Overvoltage category III, 300 V
Voltage test (routine test) according to IEC 61010-1:	overvoltage category in, 500 v
1(2)(1(3-4))	
IC 5/(IC4)	AC 2,2 KV
Supply voltage	
Supply voltage Us	AC 100240 V/DC 24240 V
Tolerance of U _s	-30+15 %
Frequency range Us	4763 Hz
Power consumption	\leq 3 W, \leq 9 VA
IT system being monitored	
Nominal system voltage Un	3(N)AC, AC 0400V/DC 0400 V
Tolerance of $U_{\rm D}$	+25 %
Frequency range of $U_{\rm p}$	DC, 15460 Hz
Measuring circuit	
Measuring voltage U _m	± 12 V
Measuring current I_m at R_F , $Z_F = 0 \Omega$	≤ 110 μA
Internal resistance <i>R</i> _i , <i>Z</i> _i	≥ 115 kΩ
Permissible system leakage capacitance Ce (R mode)	≤ 300 μF
Permissible system leakage capacitance Ce (Z mode)	≤ 1 µF
Permissible extraneous DC voltage U _{fg}	≤ 700 V
Response values	
Response value R _{an1}	2…990 kΩ (40 kΩ)*
Response value R _{an2}	1…980 kΩ (10 kΩ)*
Relative uncertainty R_{an} (R mode or $Z_F \approx R_F$)	\pm 15 %, at least \pm 1 k Ω
Hysteresis R _{an}	25 %, at least 1 kΩ
Response value Z_{an1}	11…500 kΩ (off)*
Response value Zan2	10…490 kΩ (off)*
Relative uncertainty Z_{an}	\pm 15 %, at least \pm 1 k Ω
Hysteresis Z _{an}	25 %, at least 1 kΩ
Undervoltage detection	10499 V (off)*
Overvoltage detection	11500 V (off)*
Relative uncertainty U	$\pm 5\%$ at least $\pm 5V$
Relative uncertainty depending on the frequency > 40	00 Hz -0.015 %/Hz
Hysteresis U	5 %, at least 5 V

Time response		
Response time t_{an} of $R_F = 0.5 \times R_{an}$ and $C_e = 1 \mu F$ according to IEC	61557-8	≤ 10 s
Response time t_{an} of $Z_F = 0.5 \times Z_{an}$		≤ 5 s
Start-up delay t		010 s (0 s)*
Response delay ton		099 s (0 s)*
Delay on release t _{off}		099 s (0 s)*
Displays, memory		
Display LC display, multi-fu	nctional,	not illuminated
Display range measured value insulation resistance $(R_{\rm F})$		1 kΩ4 MΩ
Display range measured value impedance (Z_F) with $f_n = 50/60$ Hz		1 kΩ1 MΩ
Operating uncertainty (R_F in R mode, Z_F in Z mode)	± 15 %,	at least $\pm 1 \text{k}\Omega$
Display range measured value nominal system voltage (Un)	0	500 V r.m.s
Operating uncertainty	±5%	, at least \pm 5 V
Display range measured value system leakage capacitance of $R_{\rm F}$ >	> 10 kΩ	0300 µł
Operating uncertainty	±15%,	at least \pm 2 μ F
Display range measured value system leakage capacitance of Z_F >	· 10 kΩ	1 nF1μF
Operating uncertainty ($Z_F \approx X_c$)	± 15 %,	at least ± 2 nF
Password	off/0	999 (0, off)*
Fault memory alarm messages		on/(off)*
Interface		
Interface/protocol PC 485/BI	MS Modh	uc PTIL icoData

Interface/protocol		K2-483	o/BMS, MODDUS KTU, ISODATA
Baud rate	BMS (9.6 kbit/s), N	Aodbus RTU (selecta	able), isoData (115.2 kbits/s)
Cable length (9.6 kbit	s/s)		≤ 1200 m
Cable: twisted pairs, shield connected to PE on one side		on one side	min. J-Y(St)Y 2x0.6
Terminating resistor		120 Ω (0,25 W), internal, can be connected
Device address, BMS	bus, Modbus RTU		390 (3)*

Switching elements

Switching elements	2 x	1 N/0 cor	ntacts, cor	nmon ter	minal 11
Operating principle	N/C opera	tion/N/O	operatior	n (N/O ope	eration)*
Electrical endurance, number of cycles					10000
Contact data acc. to IEC 60947-5-1:					
Utilisation category	AC-12	AC-14	DC-12	DC-12	DC-12
Rated operational voltage	230 V	230 V	24 V	110 V	220 V
Rated operational current	5 A	2 A	1 A	0.2 A	0.1 A
Minimum contact rating			1 m	A at AC/D	$C \ge 10 V$

Environment/EMC

EMC	IEC 61326-2-4, DIN EN50121-3-2
Ambient temperatures:	
Operation	-40+70 °C
Transport	-50+85 °C
Storage	-55+80 °C
Climatic class acc. to IEC 60721	
Stationary use (IEC 60721-3-3)	3K7
Transport (IEC 60721-3-2)	2K4
Long-time storage (IEC 60721-3-1)	1K6
Classification of mechanical conditions acc. to l	EC 60721
Stationary use (IEC 60721-3-3)	3M7
Transport (IEC 60721-3-2)	2M2
Long-term storage (IEC 60721-3-1)	1M3

Technical Data (continued))

Connection	
Connection type	push-wire terminal
Nominal current	≤ 10 A
Conductor sizes	AWG 24-14
Stripping length	10 mm
rigid	0.22.5 mm ²
flexible without ferrules	0.752.5 mm ²
flexible with ferrules with/without plastic sleeve	0.252.5 mm ²
Multi-conductor flexible with TWIN ferrules with plastic sleeve	0.51.5 mm ²
Opening force	50 N
Test opening, diameter	2.1 mm

Other	
Operating mode	continuous operation
Mounting	cooling slots must be ventilated vertically
Degree of protection, built-in components (DIN	EN 60529) IP30
Degree of protection, terminals (DIN EN 60529)	IP20
Enclosure material	polycarbonate
DIN rail mounting acc. to	IEC 60715
Screw fixing	2 x M4 with mounting clip
Weight	≤ 150 g
()* = factory setting	

Ordering information

Nominal system voltage U _n	Supply voltage U _S		System leakage	Type	Art. No.
AC/DC	AC	DC	capacitance C _e	1702	Push-wire terminal
0400 V, 15460 Hz	100240 V, 4763 Hz	24240 V	< 300 µF	isoMIL425-D4W-4	B71036306W

Accessories

Description	Art. No.
Mounting clip for screw mounting (1 piece per device)	B 9806 0008

Dimension diagram XM420

Dimensions in mm Open the front plate cover in direction of arrow!

Screw mounting

Note: The upper mounting clip must be ordered separately (see ordering information).

Bender GmbH & Co. KG

P.O. Box 1161 • 35301 Gruenberg • Germany Londorfer Strasse 65 • 35305 Gruenberg • Germany Tel.: +49 6401 807-0 • Fax: +49 6401 807-259 E-Mail: info@bender.de • www.bender.de

